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The forms of knowledge mobilized in some machine
vision systems

MICHAEL BRADY{

Robotics Research Group, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK

SUMMARY

This paper describes a number of computer vision systems that we have constructed, and which are ¢rmly
based on knowledge of diverse sorts. However, that knowledge is often represented in a way that is only
accessible to a limited set of processes, that make limited use of it, and though the knowledge is amenable to
change, in practice it can only be changed in rather simple ways. The rest of the paper addresses the ques-
tions: (i) what knowledge is mobilized in the furtherance of a perceptual task?; (ii) how is that knowledge
represented?; and (iii) how is that knowledge mobilized? First we review some cases of early visual proces-
sing where the mobilization of knowledge seems to be a key contributor to success yet where the knowledge
is deliberately represented in a quite in£exible way. After considering the knowledge that is involved in
overcoming the projective nature of images, we move the discussion to the knowledge that was required
in programs to match, register, and recognize shapes in a range of applications. Finally, we discuss the
current state of process architectures for knowledge mobilization.

1. INTRODUCTION

Machine vision systems are deployed to perform a
wide range of tasks in an equally wide range of appli-
cations. The knowledge that must be mobilized
depends fundamentally on the requirements of the
task, hence on the application. For example, consider
an aerial imaging program that is required to register
a newly acquired image to those obtained previously,
notwithstanding changes in cloud or ground cover,
and which may be required to detect signi¢cant
changes in the environment, and perhaps to interpret
what such changes are. To do so requires that the
program have, and be able to mobilize, knowledge
about the expected appearance of aerial images in the
particular part of the world under investigation, about
the spatial resolution at which the images are taken,
and about the kinds of image noise and geometrical
distortions that are expected to arise with the current
imaging device. It needs to embody knowledge of the
appearance of clouds, sand storms, seasonal changes in
ground cover, and other `non signi¢cant' changes;
conversely, it needs to have some idea about the kinds
of changes that should be considered signi¢cant (e.g.
the appearance of a new building of a certain size).
Some of this knowledge may be represented in a way
that facilitates only a limited number of processes. For
example, the expected appearance of ground cover
may be represented as a set of textural descriptors to
enable robust, automatic, region segmentation (Xie &

Brady 1996). Conversely, some knowledge may be
represented in a way that enables it to adapt quickly,
even automatically, to changing goals.

Another machine vision system may be required to
recognize an object in an image, a problem that is
considerably more di¤cult when the imaged scene is
three-dimensional (3D), and when the object may be
partly occluded by others, and the ambient imaging
conditions are not completely known in advance. Loca-
lizing an object in a 3D scene is easier than inspecting
the instance or computing how to grasp it with a robot
hand. This is because localization may be based on
information integrated over the totality of the visible
object, while inspection and grasp-planning addition-
ally require information about its local geometry.
Likewise, controlling a robot vehicle to navigate in an
environment where clearances between obstacles are
relatively large can be accomplished with representa-
tions that are crude approximations to the
environment, say that it is composed of idealized
geometric shapes. However, as the clearances become
tighter, the more this will not do and more precise,
local representations are needed.

A robot stereovision platform may be required to
track an object; often 2D trackers su¤ce even though
the object moves in 3D, a point which I will return to.
However, it is occasionally required to build up a
representation of the object that is being tracked. A
smart security camera may not only be required to
track a person, but to build up an adequate representa-
tion of the person's face, and perhaps even recognize
him. An àctive vision' system is required to control, in
real time, the motions of a device on the basis of visual
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INRIA Sophia Antipolis, 2004, route des Lucioles, B.P. 93-06902
Sophia Antipolis Cedex, France.

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


information, and deliberate movements of the device
may be made to elicit further relevant information
visually.

All the applications referred to above have been
worked on in our laboratory. The systems we have
constructed are ¢rmly based on knowledge of diverse
sorts, but that knowledge is often represented in a way
that is only accessible to a limited set of processes that
make limited use of it; and though the knowledge is
amenable to change, in practice it can only be changed
in rather simple ways (e.g. the adaptive control of a
robot head).

Vision may also be the principal source of informa-
tion for a system that is required to reason about a
scene. Given a motion sequence of a roundabout or
road junction, the goal may be to interpret the
motions of vehicles in terms of prototypical behaviours
such as lane changing, overtaking, or joining or leaving
the roundabout (Howarth & Buxton 1996). From a
video sequence of a football match, the task may be to
interpret the motions of the players in the arcane
language of football coaches. In both these cases, one
might be interested in interpreting motions as
àbnormal': as dangerous driving or foul play. In the
same way, a security system may be interested in
people who are `behaving suspiciously', while from a
computed tomographic sequence of a beating heart
one may hypothesize abnormal motion as ischaemia
(Bardinet et al. 1995).

It seems that the kind of applications referred to in
the previous paragraph require knowledge to be repre-
sented in a way that facilitates reasoning. While
processing of signals has traditionally been the domain
of the (image processing) engineer, processing symbols
has been the central concern of arti¢cial intelligence
(AI). It is in this sense that one refers to the transforma-
tion from s̀ignal to symbol' in the development of
`smart' vision systems. AI focuses on a number of ques-
tions about knowledge representation that usefully
serve as the basis for discussion in this article.
1. What knowledge is mobilized in the furtherance of

a perceptual task? As we noted above, the knowledge
mobilized is application speci¢c. How are the needs
and constraints of a task speci¢ed?

2. How is the knowledge represented? A fundamen-
tal result of computer science is that there is an essential
linkage between the representation of information and
the processes such as matching that can e¡ectively
manipulate it. The way in which knowledge is repre-
sented in a system determines what David Marr
(Marr 1982) called the accessibility, scope, and sensi-
tivity of the representation.
3. How is the knowledge mobilized? Only a subset of

the available knowledge may be mobilized in further-
ance of any given task. What kind of process
architecture enables opportunistic, dynamically chan-
ging perceptual processes?

Our current level of understanding of computer
vision enables only preliminary answers to these ques-
tions. In the next section I review some cases of early
visual processing where the mobilization of knowledge
seems to be a key contributor to success, but where the
knowledge is deliberately represented in a quite in£ex-

ible way. Section 3 reviews the knowledge that is
involved in overcoming the projective nature of
images. Sections 4 and 5 move the discussion to the
knowledge that was required in programs to match,
register, and recognize shapes in a range of applica-
tions. Section 6 simply contributes two observations
that we have learned about learning. Finally, }7
discusses the current state of process architectures for
knowledge mobilization. Necessarily, the discussion in
each section is brief.

2 . EARLY VISION

Humans, and nowadays computers, can deal e¡ec-
tively with many di¡erent kinds of image, each with
very di¡erent characteristics. Examples include far
infrared, synthetic aperture radar, (X-ray) mammo-
grams, magnetic resonance imaging (MRI) and
contrast-enhanced MRI. It has been found in practice
that early vision processes, such as edge detection, that
work well for certain classes of visual imagery, give
very poor results when applied to other classes. It has
further been discovered that reliable results can be
obtained if one mobilizes knowledge of the physics of
image formation. I will recall a number of examples
developed in our laboratory, then draw some conclu-
sions relevant to the subject of the meeting.

Far infrared (8^12 mm) imagery has many applica-
tions in night vision, not least in developing systems
that contribute to safe driving. In comparison with the
visual waveband, such images are very noisy, exhibit no
shading, while relatively poor lenses and wide angle
imagery lead to signi¢cant intensity variations (a
process known technically as `vignetting') (Highnam
& Brady 1997).We have developed a model of infrared
imagery from which we deduce that a retinex-like light-
ness computation algorithm, which uses relative
brightnesses, enables reliable image enhancement,
segmentation, and object tracking. X-ray mammo-
grams also exhibit poor signal-to-noise ratio (SNR),
while scattered illumination, radiation glare, the inevi-
table nonlinear variation of X-ray intensity across the
¢lm, ¢lm speed and exposure time all contribute to
the resulting poor image quality. We have developed a
model of the image formation process (Highnam et al.
1994) that models and corrects for all of these image
degradations. Removal of the scatter component of the
irradiation enables us to construct a representation as a
surface of the non-adipose tissue in the breast. The
importance of this representation is that it is based on
anatomical information that is intrinsic to the breast,
that is, it is invariant to image-speci¢c parameters
such as exposure time, or the particular X-ray machi-
ne's spectral characteristics. This enables the
computation of information that is normalized across a
patient group, which in turn enables a neural network
to learn which masses are àbnormal' (see ½ 6). It also
enables us to compute such 3D information as the
separation of the compression plates, and to match
images of the same breast over time. Mammograms
are highly textured in appearance, with a high
frequency texture composed of milk ducts, stroma, and

1242 M. Brady Forms of knowledge mobilized in some machine vision systems

Phil.Trans. R. Soc. Lond. B (1997)

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


larger blood vessels. Extracting these c̀urvilinear struc-
tures' from a mammogram not only facilitates
matching over time (a process that is easily distracted
by high frequency information), but enables diagnostic
signs such as microcalci¢cations to be interpreted more
reliably as benign or malignant. We have modelled
(Cerneaz & Brady 1995) the passage of X-rays
through a compressed vessel. This knowledge is then
embedded in a program to extract the curvilinear
structures from mammograms. Note that the applica-
tion of techniques that smooth an image (e.g. DOG
(di¡erence-of-Gaussians), Gabor, and wavelet ¢lters or
anisotropic di¡usion) are ine¡ective at recovering
curvilinear structure.

Two further examples (of several) su¤ce for our
purposes, and they both concern MRI. MRI images
are three-dimensional datasets, comprising a series of
planar slices, much as one might slice a potato: there
may be 256 slices, each having the same thickness.
Each planar slice is further `diced' into an array of
samples, again typically 256 by 256 per slice. The indi-
vidual samples are called `voxels'. (This neologism has a
simple etymology. When digital images were ¢rst
produced the individual picture elements were called
`pixels'. For volumetric data the volume `picture'
elements were thus called voxels.) The ¢rst example of
interest here is that brain MRI is subject to a low-
frequency `bias ¢eld' that greatly a¡ects such classi¢ca-
tion tasks as the estimation of white matter. It is possible
to exploit knowledge of the expected appearance of
brain tissue in MRI volumes taken with a particular
sequence and to mobilize this knowledge in an expecta-
tion-maximization algorithm that simultaneously
estimates the bias ¢eld and reclassi¢es the brain voxels
(Guillemaud & Brady 1997).The results are robust over
time and patient head position. Finally, it is possible to
model the uptake of a contrast agent by breast tissue to
aid the radiologist in diagnosing breast cancer inwomen
for whommammography is ine¡ective. It is also possible
to mobilize knowledge of the kinds of breast motions
expected over an examination (typically 10 min), and
then to solve simultaneously for both the slight motions
of the breast and the uptake of the contrast agent. This
leads to greatly improved assessment and localization of
cancers (Hayton et al. 1997).

We draw the following conclusions from these, and a
number of similar, examples. First, early vision algo-
rithms that work well in some cases are completely
ine¡ective in others. Second, mobilizing knowledge of
the physics of image formation can give greatly
enhanced results. Nevertheless, the results returned by
any early vision algorithm are intrinsically uncertain,
hence subsequent processing must be able to deal with
uncertainties. Third, it is necessary to carry out early
visual processing simultaneously with other more inter-
pretive processes. Fourth, a great deal of work in
`knowledge-based' machine vision was predicated on
the belief that adequate representations of intensity
changes, textures, etc., were possible only with the
deployment of `higher level' knowledge. There
continues to be an underestimation of what can be
achieved with the mobilization of appropriate `low
level' knowledge.

3. IMAGES AS PROJECTIONS

Images are projections of the 3Dworld. A central goal
of computer vision has been to understand how to recon-
struct the 3D world from one or more images taken from
one or more vantage points as in stereo structure from
motion (SFM), and shape from shading or texture. In
this section Imake three observations concerning (i) the
need in computer vision to have a number of geometrical
models of projection; (ii) the information that is neces-
sary to operate successfully in a 3D world; and (iii)
tracking with an active stereo system.

First, a number of di¡erent mathematical de¢nitions
of projection from the three-dimensional world to the
two-dimensional image (Mundy & Zisserman 1992)
have proved useful in computer vision. These include
perspective projection, a¤ne projection (which for
present purposes can be regarded as a simpli¢cation of
perspective projection in which parallel lines project to
parallel lines), and image àspectation' (which is simply
a translation and rotation in the image plane together
with a magni¢cation of an object). Each of these math-
ematical de¢nitions of projection constitutes a more or
less crude approximation to the way a camera (or an
eye) works. For example, the a¤ne approximation
works well when the range of depths surrounding the
point of interest is less than one-tenth of the distance
between that point and the camera (Shapiro 1995;
Shapiro et al. 1995; Koenderinck & van Doorn 1991).
Theoretically, the most general (perspective) de¢nition
of projection su¤ces. However, under certain
frequently-occurring imaging conditions and camera
motions, the solution to SFM may become undercon-
strained or ill-conditioned (Wiles & Brady 1996b).
There are four main causes for this: (i) degeneracy of
structure, e.g. viewing planar surfaces; (ii) certain
degenerate motions; (iii) degenerate spatial positioning
of features; and (iv) poor image preconditioning. In
such cases, using a less general de¢nition of projection,
such as a¤ne, is not only computationally more e¤-
cient, it is necessary. A system has been constructed
that automatically determines the most appropriate
de¢nition of projection for tracking road vehicles
(Wiles & Brady 1996a).

Second, it has generally been supposed that the goal
of processes such as stereo and SFM is to generate an
accurate 3D representation of the environment, as if
vision were the same as photogrammetry. Usually, to
compute depth it is necessary ¢rst to compute an
image-based quantity such as stereo disparity, from
which depth can be computed. This latter relies on the
results of a complex process that estimates a number of
internal parameters of the cameras (e.g. focal length of
the lens, and the direction of the normal to the sensor
surface) and the geometric transformation between the
cameras. This process is called c̀amera calibration'.
Unfortunately, camera calibration is a complex
nonlinear process that is often numerically ill-condi-
tioned, particularly if lens distortions are taken into
account. However, accurate 3D reconstruction of the
environment is often not necessary. For example, the
ground plane and ground plane obstacles can be esti-
mated on the basis of disparity without calibration (see
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Wiles & Brady 1996a, and the references therein). Simi-
larly, Cipolla & Blake (1992a,b) have shown how
deliberate motions enable the time-to-contact of an
object to be computed without calculating depth, while
relative motions of surface features enable an observer
to distinguish bounding contours of an object (where
the surface normal turns smoothly away from the
viewer) from edges ¢xed in space (e.g. surface creases
or re£ectance changes). In a similar fashion, (Shapiro
1995) has shown how the instantaneous axis of 3D
rotation can be computed with an uncalibrated
camera. Even more remarkably, Zisserman and his
colleagues (Beardsley et al. 1996) have shown that in
certain practically important cases an accurate 3D
model of an object can be acquired from an extended
image sequence without knowledge of the camera's
internal parameters and without knowledge of the
camera's motion.

Finally, a number of àctive' stereo camera platforms
have recently been built and used to track objects
moving in 3D. The control of such platforms is
complex, especially as it needs to be e¡ected in real
time. A key problem in tracking an object is to deter-
mine a subset of the image feature points that belong
to the object, and to determine how the set moves over
time. This is deeply related to the di¡erent mathema-
tical de¢nitions of projection referred to above.
Since objects that are tracked are often quite small

relative to their distance from the platform, the a¤ne
approximation to projection is often used. In this vein,
Fairley et al. (1995) have shown how four points in an
image establish an a¤ne frame of reference; then
a¤ne transfer (Reid & Murray 1996) can be extended
to stereo processing to control the vergence between the
cameras (analogous to the vergence of the human eyes),
track the object, and build an a¤ne representation of
the structure of the moving object.

4 . MATCHING AND RECOGNITION

A fundamental task of computer vision is: given that
a representation of an object is available inside a
computer, and given an image of a scene that contains
the object, ¢nd where it is in the image. A closely
related problem is registration: ¢nd the c̀losest' match
between two instances of an object class in two separate
images. An example might be to match up the heads of
two people given MRI volumes, notwithstanding their
di¡erent head shapes and the di¡erent relative sizes of
their jaws and noses. There are several variants to the
basic theme: (i) whether the object being represented
is 2D or 3D and whether the image/scene is 2D or
3D ^ each of the cases (model^scene) 2D2D, 2D3D,
3D2D and 3D3D are important; (ii) whether the
representation is parametric, so that by changing the
values of the parameters one can specify a range of
objects of the same class. In such a case, one wants to
determine the parameter values as a side-e¡ect of the
process of ¢nding the object in the image. In any case,
it is necessary to localize the object in the image even
when it is partly occluded by other objects. This has
the important consequence that one cannot guarantee
that local `salient' features of the object will be visible

in the image/scene. Localization is often treated as a
hypothesis generation step, to be followed by a veri¢ca-
tion phase that attempts to test that each part of the
predicted model is present.

An early attack on the problems 2D2D and 3D3D
was made by Grimson (Grimson 1990). The represen-
tations of objects are piecewise linear (or planar in
3D), the localization algorithm amounts to searching
a tree of interpretations subject to a set of constraints
that are used to prune the tree as soon as possible.
Despite the relatively in£exible representation of
knowledge about the object, the program performs
remarkably well. However, it cannot deal with repre-
sentations that are parameterized. Also, in the case of
a set of representations of di¡erent objects in which
one (say A) re¢nes another (say B), a quite common
occurrence in practice, the interpretation tree process
will always report instances of B when there are
instances of A, because it cannot take account of nega-
tive evidence (parts of A are inconsistent with B). Reid
& Brady (1996) have developed an alternative
approach to 3D3D recognition that overcomes these
two di¤culties. Interestingly, their approach replaces
the interpretation tree/¢xed object representation
used by Grimson et al. by a constraint propagation
algorithm that was originally developed for computa-
tional reasoning/logic. A further re¢nement of the
approach of Grimson for the case 3D(2D + t) was
developed by the late Professor G. Sullivan and his
colleagues (Sullivan 1993). The emphasis of that
project was to track a model instance over several
frames using a Kalman ¢lter. Impressive though these
programs are, they have the fundamental limitation
that they are essentially based on polyhedral represen-
tations of objects.

Non-polyhedral representations of shape have natu-
rally been explored in medical image processing. One
idea has been to represent the bounding contours of
objects as being èlastic': they are able to stretch and
bend, but always try to attain the shape that minimizes
their `internal energy', subject to (nearly) satisfying a
set of positional constraints. Such curves are called
`snakes', and there have been numerous variations to
the general theme used to model deformable objects
(see Kass et al. 1987; Guillemaud et al. 1997, and the
references therein). Similarly, Feldmar (Feldmar &
Ayache 1996) has developed a scheme based on the iter-
ated closest point algorithm for ¢nding successively
more accurate matches of two shapes such as faces,
¢rst by assuming a rigid transform, then an a¤ne
transform, and ¢nally local a¤ne transforms. Mostly,
the schemes developed to date that follow both of these
approaches assume prior segmentation of the data.This
seems not to be the case for the principal component
analysis approach of Taylor and his colleagues (Taylor,
this volume). It is also not the case for the algorithm
developed by Kok-Wiles (1997) for matching a pair of
mammograms (over time or leftright). The latter
approach is based on removing the curvilinear struc-
tures, as outlined in ½ 2, and then developing a
representation of breast anatomy that captures knowl-
edge of the way in which structures are embedded in
others.
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5. LOCAL SYMMETRY
REPRESENTATIONS OF SHAPE

Representations of natural shapes are sometimes
based on global information such as Fourier (or
wavelet) descriptors. Another global approach is to
imagine the shape tobemade of a uniformly dense mate-
rial and to compute its mechanical moments (area,
principal axes, etc.). However, all such representations
cope poorly with occlusion. At the other extreme, local
descriptors are typically based on s̀alient' (often curva-
ture) properties of the bounding contour (2D shapes) or
surface (3D).The latter representations have anumber of
interesting properties (Ho¡man & Richards 1986;
Thirion 1993), but fail to encode information about the
positions of salient features relative to one another. For
example, such a local representation would not make
explicit such important attributes of a shape as its
symmetries.

A symmetry is an invariant to a particular transfor-
mation of the shape, e.g. a rotation, re£ection,
translation, or scaling. The familiar mathematical
notion of symmetry (an element of a transformation
group) is too strictöit implies a global symmetry of
the shape. Blum's (1973) insight was to develop a de¢ni-
tion of a local symmetry, and to realize that the locus of
such local symmetries often coincided with what one
might regard as the s̀keleton' of the shape. Mathemati-
cally, Blum de¢ned a local symmetry (in the case of a
2D shape) as the centre of any of the largest discs that
could be ¢tted inside the shape, normally touching
(tangentially) the bounding contour of the shape at
two points. He called the locus of all such centres (and
the radius of the bitangent circle at each point) the
symmetric axis transform (SAT) and noted that it is
an information preserving representationögiven the
SAT, one can uniquely reconstruct the shape. Based as
it is on centres of bitangency, the SAT naturally favours
(local) re£ectional symmetries. In the case of elongated
shapes, the SAT coincides with the skeleton, which
Blum related to growth processes, as discussed by
D'Arcy Thompson (Thompson 1952). Blum also
discussed the `brush¢re' algorithm to generate the SAT,
which computes the locus of centres as the steady state
solution to the di¡usion equation given the bounding
contour as the initial condition. More recently, McAu-
li¡e et al. (1996) extended the SAT to provide some
invariance to scaling transformations. To do this, they
analysed the way that shapes change as they are
blurred increasingly, and showed how one can select
automatically the scales that are, in a certain mathema-
tical sense, `natural' for analysing the shape. This has
already been of considerable value in segmenting and
analysing medical images. Finally, Blum & Nagel
(Blum & Nagel 1978) showed how one might generate
a symbolic description of a shape; but their technique
seems not to have been used.

Some years ago, we noted the advantage of making
explicit all the local symmetries of a shape, not just the
subset de¢ned by maximal bitangencies. The most
compelling aspect of the symmetry set (SS) scheme is
the embedding property: suppose that a shape A is
contained inside another B, then the SS (but not the

SAT) is composed of (i) the SS of A; (ii) the SS of B;
and (iii) additional local symmetries that detail howA
is embedded in B.This makes the SS considerably more
robust than the SAT, and hence more useful in practice,
but rather more di¤cult to compute. To this end, we
have developed a parallel wave-di¡usion algorithm to
compute the SS, and have implemented it on a parallel,
distributed processor (Mukherjee & Brady 1996). The
SS computed in this way favours rotational and re£ec-
tional symmetries equally. We have also developed a
system to compute hierarchical symbolic representa-
tions of shapes of objects, and shown how such
representations might be learnt and generalized.

The 2D SS is, however, not invariant to skews as
might occur in projection of the three-dimensional
world onto a two-dimensional image. Succinctly, the
SS of a skewed shape is not the same as the skewed
version of the SS of the original shape. This appeared
for some time to lessen its usefulness for recognizing
occluded shapes in non-frontoparallel planes. Recall,
however, that there are several useful camera models,
corresponding to di¡erent de¢nitions of projection.
Among these, the a¤ne camera is particularly useful,
and it has the important property of preserving paral-
lelism, which is a strong local cue for parallelism. This
means that an image parallelism may be used to infer
scene parallelism. Mukherjee et al. (1995) have devel-
oped an algorithm that can detect and verify local
symmetries for a¤ne skew transformations, then
unskew the shape for recognition.

The 3D SAT is relatively undeveloped, not least
because there are many ways to generalize the
maximal bitangent circle de¢nition. On the other
hand, it is straightforward to generalize the SS to give
local symmetry faces. Intersections of such local
symmetry surfaces often correspond to skeletons or
àxes' of 3D shapes, as explored in computer vision in
g̀eneralized cylinders'. Szekely's recent habilitations-
schri¡t (written in English) (Szekely 1996) is a
thorough summary of the state of the art of local
symmetry representations.

6. LEARNING

Relative to studies in human perception, learning has
had remarkably little impact on the development of
computer vision. Rarely has the constraint that a repre-
sentation (of shape, image formation, or whatever) be
learnable been a consideration at the outset of a
computer vision project. Conversely, work in machine
learning has either worked exclusively with symbolic
information (rarely with information computed from
signals) or has utilized simplistic representations of
visual information. Typical of the latter are vectors of
`features' in the context of a pattern recognition or
neural network system (Bishop 1996). Recent develop-
ments in machine learning, not least advances in neural
networks, encourage the thought that it is timely to
attempt a synthesis of the more promising ideas in
computer vision and machine learning. Brady &
Connell (1987)made anearlyattempt at sucha synthesis,
in their case, on the one hand of local symmetry repre-
sentations of shape, and on the other of an algorithm
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developed for learning and reasoning by analogy. More
recently, Blake and his colleagues (Blake et al. 1995;
Reynard et al. 1996) have shown how one can represent,
track, and learn prototypical motions such as lip move-
ments.

A second point is illustrated by our work in mammo-
graphy. Mammography is typical of many problems in
medicine: the class of real interest (i.e. abnormalities,
in our case masses) is under-represented in the database
of available examples, and hence its prior probability
will be very lowöfor every one thousand women who
are screened, only ¢ve, on average, go on to develop
cancer. Lack of standardization in equipment and in
data acquisition (breast compression, ¢lm exposure
time, etc.) has so far made it impossible to assemble
multi-centre databases. As a result of this, there are
very few examples of abnormalities in any of the
existing databases. If a neural network classi¢er is
trained using the standard approach of minimizing the
mean-squared error at the output, the under-repre-
sented class will be ignored. We have been exploring
(Tarassenko et al. 1995) an alternative approach in
which we attempt to learn a description of normality
using the large number of available mammograms that
do not show any evidence of mass-like structures. The
idea is then to test for novelty against this description
in order to try and identify candidate masses in
previously unseen images.

7. ARCHITECTURES FOR KNOWLEDGE
MOBILIZATION

The previous sections have outlined the diverse kinds
of knowledge required to complete a sensor-based task.
Equally, there is need for an architecture that can e¡ec-
tively mobilize the knowledge. Such an architecture
needs to: (i) support opportunistic selection and use of
the knowledge that a system has, depending on the task
and the situation; (ii) be able to manipulate uncertain
information at multiple levels of representation and
constraint; and (iii) be robust and e¤cient. Many archi-
tectures have been experimented step by step with the
development of computer science and technology. Initi-
ally, technology forced software architectures to consist
of a relatively small number of processes (Allen Newell
referred to such systems as c̀oarse grain') designed to be
executed on a single serial processor. Recent work has
explored `¢ner' grain software architectures, involving
tens or hundreds of individual collaborating processes,
as well as genuinely parallel and/or distributed proces-
sors. It should be recognized that there remains a
limited stock of ideas about the most appropriate soft-
ware and hardware architectures to support perceptual
systems, and that theyare all in a state of rapid evolution.
The following remarks are primarily historical.

Very early in the development of computer vision it
was realized that a single sequential thread of proces-
sing was inadequate. This was clear even in early
experiments aimed at developing printed character
recognition programs: the recognition step depended
on perfect segmentation and enhancement of the
printed characters; yet these two processes could
bene¢t from each other's intermediate results, and

those of the recognition step. The fundamental reason
why a single sequential thread does not work well in
practice is that such a program resembles a house of
cards: failure of the early processes inevitably foils
later processes. Since the early processes proved to be
(and still are) di¤cult (if not impossible) to make abso-
lutely reliable, early programs only worked in carefully
contrived situations. It was, and remains, tempting to
imagine that simply by making arrows that indicate
the £ow of control between two processes point in both
directions, understanding is somehow advanced.

Nevertheless, this`insight' hasbeenthebasis foragreat
deal of work in computer vision, leading to systems that
are admirablybaroquebutmostlydonot work, or, if they
do, are quite sensitive to changes in their environment.
One popular variant to this theme was the so-called
blackboard architecture (Erman et al. 1980), in which a
number of independent processes `interact' by reading
the intermediate results of other processes (about which
they have limited understanding) from a single central
datastructure called a `blackboard', and writing their
own results on to the blackboard. Another early
approach was to exploit developing ideas about inter-
acting process models from computer science, such as
coroutines (Brady&Wielinga1979).

An idea, borrowed from control theory, is to make
explicit the constraints of a task and then attempt to
maximize agreement with the particular image data
while satisfying (mostly) the constraints. Such varia-
tional models led ultimately to the active contour model
(`snakes') described earlier in this article, and to the
system of Blake et al. referred to in ½ 6.This is a powerful
framework, but one that is limited to representing knowl-
edge as constraints. Further, optimization of nonlinear
sets of constraints encourages programs to become
trapped in local minima as they search for the global
minimum, and this in turn encourages algorithms that
attempt to escape from local minima, such as simulated
annealing (Murray et al. 1986), genetic algorithms, and
graduated non-convexity (Blake & Zisserman 1987).
Most schemes for avoiding localminima involve an occa-
sional random movement that (hopefully) leads away
from the local minimum to amore promising part of the
search space. For example, simulated annealing is an
optimization scheme in which `normally' the program
takes what appears to be the most promising step in
searching for the global optimumvalue, but from time to
time,with low probability, takeswhat appears tobe a less
favoured step. The idea can best be understood by
analogy with hill-walking: in attempting to descend to
thedeepest valley (theglobaloptimum), it is occasionally
better to climb higher to cross a ridge.The name `simu-
lated annealing' is by analogy with treatment of metals
in which the heat is gradually reduced: in this case the
height of the upwards step one can occasionally take is
gradually reduced. The major problem with simulated
annealing is that though in certain circumstances it is
guaranteed to ¢nd the globalminimum, in practice to do
so can take an unacceptably long time. Genetic algo-
rithms are another approach to optimization that
involve a random jump to another part of the search
space. They explore many di¡erent parts of the search
space, often to quite a shallow depth, whereas simulated
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annealing explores a relatively localized part of the
search space deeply. Graduated non-convexity also
explores a relatively localized part of the search space,
and does so by approximating the search space at
di¡erent scales by blurring it at each scale to convert it to
the form of a convexwellwhoseminimum is easy to ¢nd;
then the search space around that minimum is blurred
less and the process recommences.

Recently, there has been considerable interest in
perceptual psychology in parallel distributed processes
(PDP) (McClelland & Rumelhart 1986) and in
computational models of brain operation called `neural
networks' (Bishop 1996). However, to date, neither
PDP nor neural networks have had much impact on
computer vision. One reason is the need for normaliza-
tion (as in our work on mammography) which is often
hard to attain. A second related problem is the di¤-
culty of learning àbnormality' discussed in the
previous section. Mostly, however, the problem seems
to be that current neural techniques work from impo-
verished representations of knowledge. This may not
be insuperable. PDP encourages thinking about ¢ne-
grain truly parallel systems, though the vast majority
of implemented systems only run in simulation. Genu-
inely real-time, parallel (often distributed) systems
(Fairley et al. 1995; Sharkey et al. 1993; Rygol et al. 1992;
Li et al. 1995) are hard to construct and control, but as
we have found in the case of active vision, once they are
available they may change fundamentally the way we
think about seeing.

The author thanks his many collaborators whose publications
have been referred to in this paper. Nicholas Ayache kindly
hosts my sabbatical at INRIA, a sabbatical made possible by
grants from the EPSRC and NATO.

REFERENCES

Bardinet, E., Cohen, L. D. & Ayache, N. 1995 Superquadrics
and free-form deformation: a global model to ¢t and track
3D medical data. In First int. conf. on computer vision, virtual
reality and robotics in medicine (ed. N. Ayache). CVRMed'95,
Nice, France, 1995. Lecture Notes in Computer Science.
Springer.

Beardsley, P., Torr, P. & Zisserman, A. 1996 3D model acqui-
sition from extended image sequences. In Proc. ECCV'96,
pp. 683^695. Cambridge, England, 1996. Lecture Notes in
Computer Science. Springer.

Bishop, C. M. 1996 Neural networks for pattern recognition. Oxford
University Press.

Blake, A. & Zisserman, A. 1987 Visual reconstruction. The MIT
Press Series in Arti¢cial Intelligence. MA: MIT Press.

Blake, A., Isard, M. A. & Reynard, D. 1995 Learning to track
the visual motion of contours. Artif. Intell. 78, 101^134.

Blum, H. 1973 Biological shape and visual science. I. J.Theor.
Biol. 38, 205^287.

Blum, H. & Nagel, R. N. 1978 Shape description using
weighted symmetric features. Pattern Recognit. 10, 167^180.

Brady, M. & Connell, J. H. 1987 Generating and generalising
models of visual objects. Artif. Intell. 31(2).

Brady, M. & Wielinga, B. J. 1979 Reading the writing on the
wall. In Computer vision systems (ed. A. Hanson & E. M.
Riseman), pp. 283^301. Academic Press.

Cerneaz, N. J. & Brady, J. M. 1995 Finding curvilinear
structures in mammograms. In First int. conf. on computer
vision, virtual reality and robotics in medicine (ed. N. Ayache),

pp. 372^382. CVRMed'95, Nice, France, 1995. Lecture
Notes in Computer Science. Springer.

Cipolla, R. & Blake, A. 1992a Motion planning using image
divergence and deformation. In Active vision (ed. A. Blake &
A.Yuille), pp. 39^58. MA: MIT Press.

Cipolla, R. & Blake, A. 1992b Surface shape and the defor-
mation of apparent contours. Int. J. Computer Vision 9(2),
83^112.

Erman,L.D.,Hayes-Roth,F.,Lesser,V.R.&Reddy,D.R.1980
The hearsay-ii speech understanding system: integrating
knowledge to resolve uncertainty. Computing Surveys, 12(2),
213^253.

Fairley, S. M., Reid, I. D. & Murray, D. W. 1995 Transfer of
¢xation for an active stereo platform via a¤ne structure
recovery. In Proc. of the ¢fth int. conf. on computer vision.
Boston, MA, June 1995, pp. 1100^1105. Los Alamitos, CA:
IEEE Computer Society Press.

Feldmar, J. & Ayache, N. 1996 Rigid, a¤ne and locally a¤ne
registration of free-form surfaces. Int. J. Computer Vision 18,
99^120.

Grimson,W. E. L. 1990 Object recognition by computer: the role of
geometric constraints. MA: MIT Press.

Guillemaud, R. & Brady, M. 1997 Enhancement of MR
images. IEEETrans. Med. Imaging. (In the press.)

Guillemaud, R., Sakuma, M., Marais, P., Feldmar, J., Crow,
T., deLisi, L., Zisserman, A. & Brady, M. 1997 Cerebral
symmetry analysis from MRI scans. Psychiatric Res.
Neurosci. (In the press.)

Hayton, P., Brady, M., Tarassenko, L. & Moore, N. 1997
Analysis of dynamic MR breast images using a model of
contrast enhancement.Med. Image Understand. 1, 207^224.

Highnam, R. P. & Brady, M. 1997 Model-based image
enhancement of infra-red images. IEEE Trans. Patt. Anal.
Mach. Intell. (In the press.)

Highnam, R. P., Brady, J. M. & Shepstone, B. J. 1994
Computing the scatter component of mammographic
images. IEEETrans. Med. Imaging 13, 301^313.

Ho¡man, D. D. & Richards,W. A. 1986 Parts of recognition.
In From pixels to predicates: recent advances in computational and
robotic vision (ed. A. P. Pentland), pp. 268^293. MA: MIT
Press.

Howarth, R. & Buxton, H. 1996 Visual surveillance moni-
toring and watching. In Proc. ECCV'96, pp. 321^335.
Cambridge, England, 1996. Lecture Notes in Computer
Science. Springer.

Kass, M.,Witkin, A. P. & Terzopoulos, D. 1987 Snake: active
contour models. In Proc. of the ¢rst int. conf. on computer vision,
vol.1, pp. 259^268. London: IEEE Press.

Koenderinck, J. J. & van Doorn, A. J. 1991 A¤ne structure
from motion. J. Opt. Soc. Am. 8(2), 377^385.

Kok-Wiles, S. 1997 Comparing mammogram pairs in the
detection of mammographic lesions. Ph.D. thesis,
University of Oxford, UK.

Li, F., Brady, M. & Hu, H. 1995 Visual guidance of an AGV.
In Int. symp. on robotics research 1995 (ed. G. Giralt & G.
Hirzinger). Springer.

Marr, D. 1982 Vision. San Francisco:W. H. Freeman.
McAuli¡e, M. J., Eberly, D., Fritsch, D. S., Chaney, E. L. &
Pizer, S. M. 1996 Scale-space boundary evolution initia-
lised by cores. In Visualisation in biomedical computing (ed.
K. Heinz & R. Kikinis), pp.173^182. Springer.

McClelland, J. L. & Rumelhart, D. E. 1986 Parallel distributed
processing. 1. Explorations in the microstructure of cognition. 2.
Psychological and biological models. MA: MIT Press.

Mukherjee, D. P. & Brady, M. 1996 Symmetry analysis
through wave propagation. Int. J. Pattern Recognit. Artif.
Intell. 10(4), 291^306.

Mukherjee, D. P., Zisserman, A. & Brady, M. 1995 Shape
from symmetry: detecting and exploiting symmetry in
a¤ne images. Phil.Trans. R. Soc. Lond. A 351, 77^106.

Mundy, J. L. & Zisserman, A. P. 1992 Geometrical invariance in
computer vision. MA: MIT Press.

Forms of knowledge mobilized in machine vision systems M. Brady 1247

Phil.Trans. R. Soc. Lond. B (1997)

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


Murray, D. W., Kashko, A. & Buxton, H. 1986 A parallel
approach to the picture restoration algorithm of Geman
and Geman on an SIMD machine. Image Vision Computing
4(3), 133^142.

Reid, I. D. & Brady, M. 1996 Recognition of object classes
from range data. Artif. Intell. 78, 289^326.

Reid, I. D. & Murray. D.W. 1996 Active tracking of foveated
feature clusters using a¤ne structure. Int. J. Computer Vision
18(1), 41^60.

Reynard, D.,Wildenberg, A., Blake, A. & Marchant, J. 1996
Learning dynamics of complex motions from image
sequences. In Proc. of the fourth European conf. on computer vision,
pp.357^368. Cambridge, England,April1996.

Rygol, M., Pollard, S., Brown, C. & Mayhew, J. 1992 A
parallel 3D vision system. In Active vision (ed. A. Blake &
A.Yuille), pp. 239^262. MIT Press.

Shapiro, L. S. 1995 A¤ne analysis of image sequences. Cambridge
University Press.

Shapiro, L. S., Zisserman, A. P. & Brady, M. 1995 3D motion
from point matches via a¤ne epipolar geometry. Int. J.
ComputerVision 16, 147^182.

Sharkey, P. M., Murray, D.W.,Vandevelde, S., Reid, I. D. &
McLauchlan, P. F. 1993 A modular head/eye platform for
real-time reactive vision. Mechatronics 3(4), 517^535.

Sullivan, G. D. 1993 Visual interpretation of known objects in
constrained scenes. Phil.Trans. R. Soc. Lond. B 337, 118^126.

Szekely, G. 1996 Shape characterization by local symmetries.
Habilitationsschrift ETH. Zurich.

Tarassenko, L., Hayton, P., Cerneaz, N. & Brady, M. 1995
Novelty detection for the identi¢cation of masses in
mammograms. In Fourth int. conf. on arti¢cial neural networks,
pp. 442^447. Cambridge, UK: Institute of Electrical
Engineering.

Thirion, J.-P. 1994 The extremal mesh and the understanding
of 3D surfaces. Int. J. ComputerVision.

Thompson, D'A. W. 1952 On growth and form. Cambridge
University Press.

Wiles, C. S. & Brady, M. 1996a Ground plane motion camera
models. In Proc. ECCV'96, II, pp. 238^250 (ed. B. Buxton &
R. Cipolla). Cambridge, England, 1996. Lecture Notes in
Computer Science. Springer.

Wiles, C. S. & Brady, M. 1996b On the appropriateness of
camera models. In Proc. ECCV'96 (ed. B. Buxton & R.
Cipolla), II, pp. 228^237. Cambridge, England, 1996.
Lecture Notes in Computer Science. Springer.

Xie, Z.-X. & Brady, M. 1996 Texture segmentation using
local energy in wavelet scale space. Image Understand. (In
the press.)

1248 M. Brady Forms of knowledge mobilized in some machine vision systems

Phil.Trans. R. Soc. Lond. B (1997)

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/

